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Abstract—A novel cybernetic model has been developed to analyze the dynamics of the “bridge–
pedestrians” system in the transverse direction, incorporating the functional state of the pedes-
trians. An analytical expression has been derived for the critical number of pedestrians capable
of inducing rocking in the bridge. Additionally, the stability region of the system has been
assessed using the frequency criterion established by Ya.Z. Tsypkin, specifically applied to the
parameters of the London Millennium Bridge. The results of this study indicate that the rock-
ing of the bridge may be attributed to a minor neuromuscular delay among pedestrians, rather
than to the synchronization of their steps, as suggested in several existing publications. Fur-
thermore, the obtained results may have broader implications for other classes of oscillatory
human–machine systems.
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1. INTRODUCTION

Over the past two centuries, numerous incidents involving pedestrian bridges have been docu-
mented, including the notable swaying of London’s Millennium Bridge [1]. Constructed to com-
memorate the arrival of the third millennium, the bridge features a lightweight suspension structure
characterized by cables positioned below deck level. The Millennium Bridge stands out as one of
the few structures for which extensive and valuable observational data has been gathered. Notably,
it has been observed that lateral sway increases with the number of pedestrians and diminishes
when pedestrian traffic decreases or comes to a halt.

The incident involving the Millennium Bridge prompted a significant surge of publications by
esteemed researchers in prestigious scientific journals [2–5]. Initial studies concluded that the
large amplitude of oscillations was primarily induced by the synchronous stepping of pedestrians.
This finding not only resonated with public perception but also aligned well with the theoretical
framework of synchronization in coupled oscillators [6]. However, subsequent observational data
emerged that could not be solely explained by synchronization. For instance, oscillations unrelated
to the average step frequency were recorded, as well as the identification of a specific critical number
of pedestrians capable of inducing rocking in the bridge [1, 7]. In light of this evidence, several
researchers proposed that synchronization may be a consequence rather than a causative factor in
the rocking of the bridge [4, 5, 8–10].
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STABILITY ANALYSIS OF “BRIDGE–PEDESTRIANS” SYSTEM 75

In this paper, a novel model for the dynamics of the “bridge–pedestrians” system in the trans-
verse direction, incorporating the functional state of pedestrians through a delay link, is proposed.
Based on this new model, an innovative approach to analyze the stability of the system is intro-
duced.

Existing approaches to the analysis of the “bridge–pedestrians” system often describe the system
model in terms of mechanics and the influence of dynamic forces in both time and frequency
domains [11, 12]. The most commonly encountered dynamic model of a bridge in the literature is
represented by the following equation [8, 12, 13]

Mẍ(t) +Cẋ(t) +Kx(t) = F (t), (1)

where M , C and K are the mass, damping and stiffness matrices, ẍ(t), ẋ(t) and x(t) are the
acceleration, velocity and displacement vectors, F (t) is the vector of external forces, which is
defined as [14]

F (t) = Gp +
n∑

i=1

Gpαi sin(2πift− φi), (2)

where Gp is the human weight, αi is the Fourier coefficient of the ith harmonic, f(t) is the frequency,
φi is the phase shift of the ith harmonic, i is the ordinal number of the harmonic, and n is the total
number of harmonics.

By analogy with (1), the dynamics of pedestrians can be modeled as an oscillator characterized
by its own mass, stiffness, and damping coefficient. This methodology has been applied to analyze
vertical oscillations in [15, 16], where the “bridge–pedestrians” system is expressed as[

ms 0
0 mc

]{
ẍs(t)
ẍc(t)

}
+

[
cs + cc −cc
−cc cc

]{
ẋs(t)
ẋc(t)

}
+

[
ks + kc −kc
−kc kc

]{
xs(t)
xc(t)

}
=

{
fs(t)
fc(t)

}
. (3)

In equation (3), m, c, and k denote the mass, damping coefficient, and stiffness, respectively;
the index s corresponds to the bridge, while c pertains to the pedestrian.

The inverted pendulum model with a rigid support and limited motion in the frontal plane effec-
tively captures key features of pedestrian behavior on a horizontally oscillating surface, including
both kinematics and kinetics [9, 17]. One of the assumptions underlying this model is that ground
surface oscillations do not influence the timing of pedestrian steps. However, as demonstrated
in [18], this assumption does not always hold true in practice. In this paper, a law for controlling
foot placement that accounts for the delay in foot contact with the ground is proposed.

Recent advancements in addressing the stability of pedestrian bridges are presented in works such
as [8–10], where results are derived based on the assumption that step synchronization arises as a
consequence of bridge swaying. This condition facilitates the formulation of a relationship between
the amplitude and phase balance of pedestrians and the bridge, allowing for the determination of
a critical number of pedestrians that satisfy this relationship. In [8–10], pedestrian dynamics are
modeled using the Van der Pol oscillator

f(x, ẋ) = λ(ẋ2 + x2a2)ẋ+ ω2x, (4)

where x is the coordinate of the pedestrian’s center of mass, λ is the damping, a is the limit cycle
amplitude, ω is the step frequency. In the subsequent work by the authors [8], the force F (t)
exerted on the bridge by pedestrians is articulated in terms of the average pedestrian damping
coefficient σ(ωi,Ω). This coefficient is significantly influenced by the ratio of the bridge oscillation
frequency Ω to the pedestrian step frequency ωi. It was found that there is a large range of
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pedestrian step frequencies and bridge oscillations for which σ(ωi,Ω) < 0. This means that, at
a certain critical number of pedestrians, the overall modal damping of the bridge may become
negative. Consequently, the authors proposed a straightforward formula for calculating the critical
number of pedestrians

Ncr = −c0/σ, (5)

where c0 is the passive damping coefficient of the bridge.

The paper is structured as follows: Section 2 presents the problem statement. Section 3 describes
the model of the “bridge–pedestrians” system. Section 4 discusses the stability analysis of this
system and provides analytical expressions for the critical number of pedestrians. Finally, Section 5
outlines the results and their potential applications.

2. PROBLEM STATEMENT

The existing literature employs an approach to modeling pedestrian behavior that emphasizes
understanding the mechanisms of walking as governed by the central nervous system. However, the
high sensitivity of humans to surface vibrations elicits a response that triggers subsequent muscular
actions. This observation underscores the necessity of conceptualizing humans as integral compo-
nents within a closed system, taking into account their physical and psychophysiological properties.
This perspective is well-established in the field of human-machine systems and is predicated on the
characterization of human functional states [19]; however, it has yet to be applied to the dynamics
of gait.

Without delving into the causes of bridge swaying, we will assume that individuals traverse
the bridge at an average step frequency, exerting force on the surface equivalent to their body
weight while simultaneously striving to maintain balance through visual and vestibular information
processed by the central nervous system. The corresponding block diagram for such a system is
presented in Fig. 1. In this context, this paper proposes the development of a cybernetic model
for the “bridge–pedestrians” system and aims to investigate its applicability for designing and
analyzing bridge structural vibrations using methodologies from automatic control theory. To
achieve this, it is essential to delineate the dynamics of movement for each component within the
“bridge–pedestrians” system through dynamic links.

Fig. 1. General diagram of the “bridge–pedestrians” system.

3. MODEL OF THE “BRIDGE–PEDESTRIANS” SYSTEM

Human movement encompasses a variety of types that are often difficult to characterize due to
their inherent randomness. Consequently, existing literature has examined the effects of groups
of individuals engaged in walking [15], running [20], and jumping [21] on structural design con-
siderations. By defining specific tasks and categorizing human movements, it becomes possible to
introduce an approximate mathematical description of these actions that captures the fundamental
properties of locomotion. Such descriptions are particularly relevant in the fields of bipedal robot
design and human–machine systems.
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Fig. 2. Block diagram of the “bridge–pedestrians” system.

In this context, the findings from cybernetic models of pilot control actions — specifically con-
cerning error tracking and pitch deviation rates — are well-documented. These models have con-
tributed to our understanding of oscillatory phenomena induced by pilot actions [22, 23]. Research
into the interaction between human pilots and aircraft has revealed a tendency for individuals
to strive for optimal system control, which manifests as an adaptive property of neuromuscular
dynamics in response to the changing dynamics of the system [19, 22–25].

The concept of optimality in human movement is frequently discussed in relation to the energy
expenditure associated with executing specific actions. This characteristic is particularly applicable
to periodic and repetitive movements, such as sustained walking. On a stable surface, the primary
objective is to maintain balance, a task that individuals typically perform reflexively, without
conscious thought. However, when navigating an unstable surface, individuals must exert effort or
control to sustain balance. This process requires time for the central nervous system to process
information and make decisions, which introduces a certain degree of delay.

A clear illustration of the interaction between a person and a structure can be observed in every-
day situations, such as when traversing a relatively lightweight suspension bridge on a two-wheeled
vehicle (e.g., a bicycle). In such scenarios, the bridge begins to sway noticeably. Notably, the more
actively an individual attempts to maintain balance, the more pronounced the oscillations of the
bridge become. In all instances, consciously reducing one’s efforts to maintain balance — essentially
decreasing the proportional gain coefficient “in the head” — can mitigate these oscillations.

The cybernetic model of human behavior in the frequency domain is structured as a series of
interconnected blocks, each representing the processes of perception, strategy development, and
control action processing [25, 26]. Three primary stimuli facilitate the perception of information:
visual, vestibular, and proprioceptive. Within the framework of a structural approach, it is posited
that the processes of information processing and strategy formulation occurring within the central
nervous system are analogous for each type of perceptual stimulus. Each action performed neces-
sitates a specific duration of time, which can be effectively characterized by a delay link; this delay
tends to increase as the complexity of the control process escalates.

The aforementioned adaptive property of humans is represented through correction blocks cor-
responding to each perceived stimulus, with the cumulative response subsequently directed to the
motor system. This structure ultimately delineates the transfer function governing human control
actions [25, 27–29].

The most extensively studied model is the correction model developed by individuals based on
visual perception of a command stimulus. Numerous studies have demonstrated that individuals
possess the ability to amplify, differentiate, and smooth the perceived signal [27–29].

Figure 2 illustrates the model of a pedestrian who utilizes both visual and vestibular channels
for information perception while walking. According to this model, a pedestrian attempts to
compensate for discrepancies in the angle and angular velocity of roll to maintain balance during
locomotion. Thus, the pedestrian operates within a closed-loop system, with their behavior being
influenced by the dynamics of the bridge.
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The transfer function of the pedestrian model relating the error in angle deviation to the roll
angle can be expressed as [24, 30, 31]

Wp(s) = NKxsKẋG(s), (6)

G(s) =
T 2e−τs

s2 + 2ξTs+ T 2
, (7)

where N represent the number of pedestrians, while Kx and Kẋ denote the gain factors, G(s) is
the transfer function governing the neuromuscular dynamics of pedestrians, ξ and T refer to the
damping factor and frequency, respectively, whereas τ is the neuromuscular lag time. It is important
to note that, as demonstrated in [31], the value of Kẋ is negative.

Considering the bridge model as described in equations (1) and (6), the transfer function of the
open-loop system comprising the “bridge–pedestrians” interaction — from the displacement in the
transverse direction of the bridge x to the deviation error ex — can be expressed as follows

W (s) = Wp(s)Wb(s) =
NKpT

2se−τs

(s2 + 2ξTs+ T 2)(Ms2 + Cs+K)
, (8)

where Kp = KxKẋ.

4. STABILITY ANALYSIS OF THE “BRIDGE–PEDESTRIANS” SYSTEM

The remaining parameters of the system are assumed to be constant. The following parameters of
the London Millennium Bridge are known: mass M = 81000, stiffness K = 3390 733 kg/s2, damp-
ing coefficient C = 7681 kg/s, and natural frequency Ω =

√
K/M = 6.5 rad/s [8, 33]. Additionally,

the parameters related to the neuromuscular dynamics of a pedestrian are T = 30, ξ = 0.7 [31].

The comfortable time required for information processing in the central nervous system and
the transmission of signals along neuromuscular fibers for pilots in manual control mode is ap-
proximately 0.2 seconds [25, 27]. Due to the movement of the bridge surface, the pedestrian’s
orientation angle changes, presenting a non-standard situation that triggers the adaptation pro-
cess to new conditions. This adaptation is reflected in the settings of the parameters defined in
equation (6), including the delay time. Depending on external circumstances, an individual may
either decrease or increase the neuromuscular delay time. For instance, a reduction in the delay to
0.08 seconds is associated with an increase in neuromuscular tension [22].

To evaluate the magnitude of the delay time and its corresponding frequency, which affect the
stability of the system, it is convenient to employ the frequency criterion established by Ya.Z. Tsyp-
kin [34, 35]. The critical frequency ω0i is determined from the following equation

|W (ω0i, N)| − 1 = 0, (9)

where |W | denote the amplitude-frequency response (AFR) of an open-loop system without the
delay link, as presented in (8). Subsequently, the resulting value of ω0i is substituted into the
expression for the phase relationship, which generally assumes the following form

τ0i(n) =
θ(ω0i)

ω0i
+

2πn

ω0i
, n ∈ N, (10)

where θ(ω0i) = arctan(W (ω0i)). This critical delay time τ0i delineates the transition of the system’s
roots through the imaginary axis, thereby establishing the stability boundary of the system. The
system under investigation will be considered stable when (9) yields has no solutions with respect
to ω0i; in other words, when the hodograph of the system remains within the unit circle.
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Fig. 3. Amplitude-frequency response of the “bridge–pedestrians” system with and without
the neuromuscular dynamics link.

Let us apply the criteria outlined in (9) and (10) to (8). It is noteworthy that the AFR (8)
coincides with the AFR that does not account for the neuromuscular dynamics link across a broad
frequency range of 1–10 rad/s (see Fig. 3). This observation allows us to infer that for the purpose
of assessing the stability of the system, the neuromuscular dynamics link can be neglected within
this frequency range. Consequently, equation (8) can be reformulated as follows

W̃ (s) =
NKpse

−τs

(Ms2 + Cs+K)
. (11)

Let us move from s to jω in (8) and isolate the real and imaginary components without taking
into account the delay link

W̃ (jω) = KpN

[
jω(K −Mω2)

(K −Mω2)2 + C2ω2
+

Cω2

(K −Mω2)2 + C2ω2

]
. (12)

Then (9) can be written as

K2
pN

2
[
(Cω2)2 − ω2(K −Mω2)2

]
[
(K −Mω2)2 + C2ω2

]2 − 1 = 0, (13)

by expanding the brackets, we derive an eighth-order equation represented as

A8ω
8 +A6ω

6 +A4ω
4 +A2ω

2 +A0 = 0, (14)

where A8 = −M4, A6 = 4KM3 −K2
pM

2N2 − 2C2M2, A4 = 2KK2
pMN2 − 6K2M2 + C2K2

pN
2+

4C2KM , A2 = 4K3M −K2K2
pN

2 − 2C2K2, A0 = −K4.

We perform a variable substitution in equation (14) by letting ω2 = t. This substitution is
essential for the subsequent analysis of the obtained solution. The solution to equation (14) with
respect to ω, expressed symbolically using MATLAB, yields the following expression

t2 =

[
2

4M2

√
C4+

σ7
2

+4KM3σ3+3C2Kp
2N2−2C2M2σ3−σ2−Kp

2M2N2σ3−σ1−2C2

+2M2

√
σ42

4M8
+

σ6−8MK3+σ5
σ4

+
−C4+σ2+C2Kp

2N2−6K2M2+σ1
M4

−Kp
2N2+4KM

]1
2

,

(15)
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where σ1 = 2KKp
2MN2, σ2 = 4C2KM , σ3 =

√
σ7

4M4 − 2K2

M2 − 8K3M
σ4

+ σ6
σ4

+ 2C2Kp
2N2

M4 + σ5
σ4
,

σ4 = 2C2M2 +Kp
2M2N2 − 4KM3, σ5 = 2K2Kp

2N2, σ6 = 4C2K2, σ7 = Kp
4N4.

The expression in equation (15) appears under the square root and is dependent on the variable
parameter representing the number of pedestrians N . Consequently, numerically, equation (15)
can assume any values, including complex ones. However, the physical context of the problem
necessitates that only real quantities are considered. Therefore, it is imperative to establish a
condition for the existence of a real non-negative solution. One such condition is the non-negativity
of the radical expression in equation (15). Based on this, all conditions for a real solution are derived
symbolically using MATLAB

N ∈ R ∧ 2M2

√
σ52

4M8
+

σ7 − 8M K3 + σ6
σ5

+
−C4 + σ3 + C2Kp2N2 − 6K2 M2 + σ1

M4

+ 2

√
C4 +

σ8
2

+ 4K M3 σ4 − 2C2 M2 σ4 + 3C2 Kp2N2 − σ3 −Kp2M2 N2 σ4 − σ1 − σ2

= 2C2 − 4KM ∧ 2C2 + σ2 �= 4KM ∧ 0 < N,

(16)

where σ1 = 2K Kp2M N2, σ2 = Kp2 N2, σ3 = 4C2 KM ,

σ4 =
√

σ8
4M4 − 2K2

M2 − 8K3 M
σ5

+ σ7
σ5

+ 2C2 Kp2 N2

M4 + σ6
σ5
, σ5 = 2C2 M2 +Kp2M2 N2 − 4KM3,

σ6 = 2K2 Kp2 N2, σ7 = 4C2 K2, σ8 = Kp4 N4.

After conducting both numerical and analytical analyses of the aforementioned constraints in
MATLAB, we determine that the smallest N for which a real solution exists is governed by the
condition

K4
pN

4 + (4MKK2
p − 2C2K2

p)N
2 + C4 − 4MKC2 � 0. (17)

By setting the left side of equation (17) to zero and substitutingN2 = t2, we obtain an expression
for the discriminant

D2 = (4MKK2
p − 2C2K2

p)
2 − 4K4

p (C
4 − 4MKC2) = 16K4

pM
2K2, (18)√

D2 = ±4K2
pMK, (19)

then the roots of (17) can be found from the expression

t12 =
−4MKK2

p + 2C2K2
p + 4K2

pMK

2K4
p

, (20)

t22 =
−4MKK2

p + 2C2K2
p − 4K2

pMK

2K4
p

. (21)

Substituting the numerical parameters into equations (20) and (17), we find that t12 > 0 and
t22 < 0. We will subsequently perform the inverse substitution of t2 back to N2 and extract the root
of t2. Therefore, we will discard t22 < 0, leading to

N2 =
−4MKK2

p + 2C2K2
p + 4K2

pMK

2K4
p

, (22)

from where, leaving only the positive root, we get:

N =
C

Kp
. (23)
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Fig. 4. Amplitude-phase frequency response of an open-loop system with varying numbers of pedestrians.

Fig. 5. The dependence of the number of pedestrians on the critical neuromuscular delay is indicated.
The region of stability is marked with hatching.

By substituting the system parameters into equation (23), we obtain N = 160.0208, which cor-
responds to the critical number of pedestrians derived from Ya.Z. Tsypkin’s criterion, denoted as
NC

cr = 160. Thus, this value represents the maximum possible number of pedestrians at which
the system remains stable, independent of delay. The graphical representation of solution (9) is
illustrated in Fig. 4, where the numerical result coincides with that obtained from equation (23).

Further increases in N lead to the intersection of the hodograph with the unit circle at two
points. For instance, at N = 167, we find two solutions: ω01 = 6.45 rad/s and ω02 = 6.48 rad/s,
with the corresponding points indicated in Fig. 4. Since ω02 > ω01, it follows that τ02 < τ01, where
τ02 represents the critical delay time. For the given hodograph, this can be determined from the
expression

τ02 =
π − θ(ω02)

ω02
. (24)

Substituting the numerical values into equation (24), we obtain τ02 = 0.086 s. Thus, forN = 167,
the critical delay for stability is τ02 = 0.086 s, which corresponds to excessive neuromuscular tension
in individuals [22]. An increase in the number of pedestrians further leads to an escalation in the
critical delay required for maintaining stability.

Figure 5 illustrates the relationship between the number of pedestrians and the neuromuscular
delay N(τ0), as derived from the solutions of equations (9) and (24). The figure clearly indicates
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Fig. 6. Dependence of the amplitude of bridge oscillations on time for 250 pedestrians walking at a frequency
of 5.4 rad/s.

Fig. 7. Frequency response of the “bridge–pedestrians” system with different values of neuromuscular delay.

that the stability region is constrained by the number of pedestrians at minimal delays, with a
sharp increase observed in the region of delay values that are typical for humans.

The dependence of the bridge oscillation amplitude on time, influenced by 250 pedestrians
walking at an average frequency of 5.4 rad/s and exhibiting varying delays, is depicted in Fig. 6.
At a normal delay of τ2 = 0.2 s, the bridge exhibits stable oscillations with an amplitude of approxi-
mately 20 cm. In contrast, the neuromuscular tension associated with a smaller delay of τ1 = 0.05 s
results in a gradual increase in oscillation amplitude.

Figure 7 presents the amplitude-phase frequency response (APFR) of the “bridge–pedestrians”
system for different values of neuromuscular delay (0.02 s and 0.2 s), which introduces a corre-
sponding phase shift between the input and output of the system.

Thus, the stability of the system is influenced not only by the number of pedestrians but also
by the delays they introduce due to the characteristics of their neuromuscular systems. This factor
had not been previously considered in the analysis of the “bridge–pedestrians” system.
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5. CONCLUSION

This paper proposes a novel approach to studying the stability of human-machine systems with
oscillatory dynamics, exemplified by the “bridge–pedestrians” system. A linear model of the closed-
loop “bridge–pedestrians” system is examined, incorporating both pedestrian muscle dynamics and
processes occurring within the central nervous system. This approach enables us to represent the
closed-loop system as a transfer function that includes a delay element, thereby facilitating stability
assessment using methods from automatic control theory.

The applicability of this approach is demonstrated through an analysis of the swinging of
the London Millennium Bridge during its opening day, when pedestrians traversed it. Utilizing
Ya.Z. Tsypkin’s frequency criterion across various delay values, we derived conditions pertaining
to the number of pedestrians that ensure the stability of the closed-loop system is not compro-
mised. Numerical results indicate that significant bridge oscillations can be attributed to reduced
neuromuscular delays among pedestrians. Specifically, due to their heightened sensitivity to minor
surface vibrations, pedestrians require time to adapt to changing conditions, which manifests as
excessive neuromuscular tension. A rapid pedestrian response introduces a minimal phase shift
between the input and output of the “bridge–pedestrians” system, resulting in bridge swaying and
potential loss of stability. Conversely, a slower response introduces a phase shift of approximately
90 degrees, which contributes to stabilization.

The proposed approach provides a more nuanced framework for analyzing and designing struc-
tures utilized by people that exhibit oscillatory dynamics. Future research could focus on refining
the parameters of the neuromuscular dynamics model while considering nonlinearities in the bridge
model and the impact of external disturbances.
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